
A . Derezińska, P. Trzpil, Mutation testing of ASP.NET MVC, J. Swacha (Ed.) Advances in Software Devel-
opment, Scientific Papers of the Polish Information Processing Society Scientific Council, Warsaw 2013, pp.
127-136

dr Anna Derezińska, Piotr Trzpil
Institute of Computer Science
Faculty of Electronics and Information Technology
Warsaw University of Technology
e-mail A.Derezinska@ii.pw.edu.pl

Mutation testing of ASP.NET MVC

Abstract
Mutation testing deals with assessing and improving quality of a test suite for a com-
puter program. The range and effectiveness of the method depends on the types of
modifications injected by mutation operators. We have checked whether mutation
testing technique can be used to evaluate test cases for ASP. NET MVC-based web
applications. Several new specific mutation operators were created and discussed. The
operator judgment was experimentally verified with the mutation tool implementing
the operators in the Common Intermediate Language (CIL) of .NET. The results show
that mutation testing can be successfully applied to an application running on a web
server, but execution times of functional tests can be long.

Keywords: mutation testing, ASP .NET MVC, C#, Common Intermediate Language

Introduction

Mutation testing is a process that can be used to measure quality of a
test suite for a computer program [4]. It is based on injecting deliberate mis-
takes into the application code and testing the modified program to gain in-
formation about insufficient and missing tests. Algorithms used to create mod-
ifications (mutation operators) can be devoted to general features of a pro-
gramming language such as logical expressions, or object-oriented characteris-

Mutation testing of ASP.NET MVC

tics. However, specific application technology, such as web processing also
requires comprehensive testing, which could be verified with the mutation
approach. The ASP.NET MVC programming environment was chosen for
evaluation. This framework is a set of libraries for creation of easily-tested
web applications using the Model-View-Controller design pattern [5,11].

We proposed several specialized mutation operators that can be applied
in the ASP.NET MVC applications at the Common Intermediate Language
(CIL) code originated from the C# source code. The operators were imple-
mented in the mutation tool and experimentally evaluated. In experiments two
common methods of application testing were taken into account: unit tests and
functional tests run in a web browser.

1. Related work

Mutation testing was applied for different general purpose languages as
well as specific domain languages [4]. Mutation operators related to .NET
platform were developed at two code levels, with changes provided into C#
source code or into lower level of the Common Intermediate Language (CIL).

General purpose structural mutation operators are implemented in the
Nester tool [9]. The simple C# code modification rules are defined in regular
expressions or XML document and can result in invalid mutants. The tool is
not further developed. PexMutator [10] cooperates with the Pex extension of
the Microsoft Visual Studio. It injects several structural changes into Interme-
diate Language. The mutated code is verified with tests automatically generat-
ed by Pex. CREAM (CREAtor of Mutants) was the first mutation testing tool
dealing with object-oriented mutation operators for C# programs [1,2]. Faults
are injected into the C# code in the form of a syntax tree which is an output of
the parser analysis. The current - third version supports 8 standard and 18 ob-
ject-oriented mutation operators of C#. Mutations of Intermediate Language of
.NET for programs originated from C# are introduced by the ILMutator proto-
type [3]. It implements 10 object-oriented and C# specific mutation operators.

Mutation testing was considered for web applications based on the
ASP.NET Web Forms [6]. Though, applications using this former library have
less test facilities and do not support the MVC pattern that is fundamental for

Mutation testing of ASP.NET MVC

mutation operators aimed at ASP.NET MVC. Advantages and disadvantages
of integration and unit testing of ASP.NET MVC are discussed in [12].

2. Mutation operators for ASP.NET MVC framework

The ASP.NET MVC framework is a set of libraries supporting building
of highly testable Internet applications based on the MVC (Model-View-
Controller) architectural pattern [5, 11]. It combines programming paradigms
common to Ruby on Rails, such as conventions over configuration, model
binding and code simplicity, with the ASP.NET web technology of Microsoft
(running on .NET framework).

The MVC architectural pattern separates an application into three main
components: the model, the view, and the controller. In the framework, URL
requests are mapped to controller classes and their methods. The controller
handles and responds to user input and interactions. The controller performs
operations on the model, and forwards a response e.g. a view to the user. Ac-
tion methods (also called ‘actions’) are controller methods that can handle
HTTP requests. They are recognized by their return type – deriving from Ac-
tionResult. The platform manages and calls specific actions to handle incom-
ing requests.

Views are components providing generic data for presentation of web
pages. In the framework, views are files returned by controller actions. The
files consist of HTML code, combined with the source code of an imperative
language of .NET - usually C#.

Model objects implement the logic for the business data domain. They
often cooperate with the data base that stores the model data.

Separation of components and loose coupling of controllers with the ex-
ecution platform encourage application testability. In unit tests, we can create
controller objects, call their methods and verify results.

Mutation operators devoted to selected features of a programming tech-
nology should take into account various criteria, such as:

- a place of a change can be easily identified in the code,
- a code modification can be straightforwardly realized,
- a modified code is not detected by all tests,

Mutation testing of ASP.NET MVC

- a mutation mimics a mistake that can be commonly made by a soft-
ware developer.

We propose six new mutation operators for ASP.NET MVC that can be
implemented at the CIL level. Selected mutation operators are illustrated by
examples in the C# code corresponding to actual CIL code on which the muta-
tion operators operate. In other cases code examples are omitted due to brevity
reasons. Full examples are available in the thesis [13]. The following sections
present mutation operators grouped by area of application.

2.1. Modifications of Model Binding

Values of client requests can be automatically adjusted to action param-
eters. A request is passed to a method if its name is identical to the name of the
action parameter.

CAPN - Change Action Parameter Name is a mutation operator that
changes the name of an action parameter. The name is substituted by a dummy
name such as “mutatedParameterName#”, where # stands for an order number
(Listing 1). In consequence, a request value for the action parameter will not
be found during a mutant execution, unless a default value was defined. The
result of this mutation depends on the parameter type. If the parameter is of
reference type, it will be set to null and will probably cause a fault of the
method. In case of a value parameter, an exception will be raised immediately.

This mutation can be easily introduced in the intermediate language. It
is more complicated when applied in the C# code due to usage of optional
parameters. In C# the whole project has to be searched for occurrence of the
method calls (expected in unit tests) in order to ensure a compliable code.

// Before mutation - C# code

public ActionResult Edit(string name) { ... }

// After mutation - C# code

public ActionResult Edit(string mutatedParameterName1) { ... }

Listing 1. Example of CAPN operator - Change Action Parameter Name

Mutation testing of ASP.NET MVC

2.2. Modifications of Action Attributes

There are two kinds of C# attributes that are placed before action meth-
ods: method selectors and filters. A programmer can use attributes delivered
by the platform or create their own attributes.

Method selectors are used for identification of an action which will be
executed after a request delivery. One of such attributes is ActionNameAttrib-
ute that changes a default action name, which is the name of a method, into a
given name.

Filters make actions to be constrained with additional restrictions. Filter
attributes can be placed before a controller class, thus influencing all actions of
the controller. Among other filters of the framework, we can use AuthorizeAt-
tribute for an action that has to be authorized, or HandleErrorAttribute stating
what should be done when an exception was raised.

Attributes have influence on application execution only if it is executed
on a server. Therefore the most obvious tests that verify usage of attributes are
functional tests run in a web browser. Using unit tests a presence and a state of
an attribute can be verified.

SWAN - Swap Action Names could be a mutation operator that swaps
names of two actions through interchange of ActionName attributes. In result,
in all cases when one action should be executed another action is raised. In
order to have a consistent code, both actions should have the same number of
parameters of the same types. Moreover, action names can be checked by a
compiler, e.g. while calling RedirectToAction method, and the mistake can be
easily detected.

RAAT - Remove Authorize Attribute - is a mutation operator that re-
moves Authorize attribute placed before an action or a controller. Therefore
the action or all actions of the controller can be called by an anonymous client.

This mutation checks an important feature of an application concerning
its security. In many programs, it is easy to be applied both in C# and CIL
code. However, Authorize attribute can be extended by inheritance with addi-
tional functionality or other authorization policy. In such cases the removal of
the attribute should be waived.

Mutation testing of ASP.NET MVC

2.3. Modifications of Action Results

An action of a controller returns a value describing a server answer to a
client request. There are different types of such answers inherited from the
ActionResult class, for example: ViewResult - a view is generated, Redirec-
tResult - redirection of a client to another address, JsonResult - a return value
is in JavaScript Object Notation, FileResult - a file is returned. Methods of
controller support creating of these answers.

An application changes its behavior if a value returned by an action is
modified. The mutation is limited for the cases when the return value inherits
from the ActionResult class, which is a typical solution.

RVRA - Replace View with RedirectToAction - is a mutation operator
that changes an object returned by a controller action; RedirectToActionResult
is returned instead of ViewResult (Listing 2). The mutation can be detected by
tests that check a type of an object returned by an action.

// Before mutation - C# code

public ActionResult ViewOrRedirect(object obj)

{ return base.View(obj); }

// After mutation - C# code

public ActionResult ViewOrRedirect(object obj)

{ return base.RedirectToAction("Index"); }

Listing 2. Example of RVRA operator - Replace View with RedirectToAction

CRAT - Change RedirectToAction Target - is a mutation operator that
changes a target action being a redirection method call parameter. The muta-
tion can be implemented by substitution of a string identifying a target action.

In the selected solution the name is substituted by a dummy action “Mu-
tatedIrrelevantActionName”. Usage of a dummy action is easy to be imple-
mented and it is irrelevant whether the action redirected to exists or not. The
action will not be found and will cause an error when run on a web server.
However in unit tests this will not be the case and a user must check the Ac-
tionResult object for valid action name.

Mutation testing of ASP.NET MVC

2.4. Modifications of Route Mapping

URL routing is used for mapping incoming URL requests to the appro-
priate controllers and their actions. The routing engine parses variables defined
in the URL and the framework passes the parameter values to the controllers.

CMRA - Change MapRoute Address Pattern - is a mutation operator
that changes an URL address. The string defining the URL pattern is substitut-
ed by a dummy one, e.g. “MutatedString”. Therefore the route will be not cor-
responding to any incoming request. One of other existing routes will be used
and as a result the appropriate controller might not be found.

The basic rule of the mutation is easily implemented. However, there
are many overloaded forms of the MapRoute method. Extension of the muta-
tion operator to all of them requires investigation of many possible parameter
combinations. The CMRA operator is reasonable for bigger projects with
many routes applied. In a small project a routing mistake can be easily detect-
ed by a developer.

3. Experimental evaluation of ASP.NET MVC mutation operators

Mutation experiments on the above discussed mutation operators were
performed with the VisualMutator tool [13]. This tool was developed as a Vis-
ual Studio extension and provides an expansible framework for mutation test-
ing at the CIL level. Tight coupling with the Visual Studio development
framework makes the mutation testing process efficient, as the program under
test is compiled only once and mutants can be generated fast.

Two subjects based on the ASP.NET MVC platform were evaluated in
experiments (Tab. 1). Their open source code is available on the codeplex.com
service. The first subject is NerdDinner [8] - an open source project that helps
Internet people plan get-togethers. It utilizes the authorization system based on
the Open ID standard and local accounts. The application also uses Bing
search engine, geolocation and RSS feeds. NerDinner is distributed with a set
of unit tests. The second subject of experiments is MVC Music Store [7] - a
store which sells music albums online. This application was tested with func-
tional test cases that run in a web browser implemented as control instructions
of the WebDriver library.

Mutation testing of ASP.NET MVC

The basic metrics of the applications and their test cases are summarized
in Tab. 1. The metrics were measured with the NDepend tool. In Music Store,
big samples of exemplary data included in the program were omitted.

Table 1. Subjects of experiments

 NerdDinner Music Store
 Applic. Test cases Applic. Test cases
LOC without comments 730 461 195 61
Type number 71 20 27 2
Method number 399 156 172 17

Results of the test ability to detect faults injected by the mutation opera-

tors are shown in Tab. 2. In case of NerdDinner mutants of only two operators
were killed by unit tests. Operators RVRA and CRAT modify results returned
by actions, which is usually covered by unit tests. Equally important is verifi-
cation of route mapping (CMRA) that is not covered by the tests designed for
the application. Other mutants are not easily killed by unit tests unless the
reflection mechanism was applied.

Tests of Music Store run were more effective in killing mutants. They
required less code (Tab.1) but were run in the web browser and took more
time. An average test time of a mutant was equal 1.9 s for NerdDinner with
unit tests run with NUnit, whereas 26.2 s for Music Store mutants run in the
ASP.NET Development Server and functional tests executed with the assis-
tance of VS MsTest.

Table 2. Mutation testing results

Mutation
operators

NerdDinner Music Store
mutant number killed mutant number killed

CAPN 25 0 14 7

RVRA 37 22 18 6

CRAT 11 5 10 3

SWAN 15 0 8 6

RAAT 13 0 4 1

CMRA 3 0 1 1

Sum 104 27 55 24

Mutation testing of ASP.NET MVC

Conclusions

We have shown how the mutation testing approach can be applied for
the ASP.NET MVC-based web services.

Efficiency of a unit test suite in the respect of the considered mechanism
verification was not very high (mutation score about 26%). However, it is
difficult to cover by unit tests all mechanisms utilized by an application run on
a server. Better mutation results (44%) with mutants killed of all fault types
gave test cases run in a web browser but their execution times were signifi-
cantly longer.

In many cases, the functionality of presented operators can be approxi-
mated by standard and object mutation operators for C# language. However it
can be assumed that part of possible programmer error space will not be cov-
ered in that case, due to differences of ASP.NET MVC-based application and
standard desktop application. The specific operators for the platform should
operate on higher level of abstraction, making use of concepts of the platform
and the language. This puts them to good use along standard and object opera-
tors. Nevertheless, usability of each operator should be analyzed to avoid du-
plicating functionality of classic operators.

Some faults, as e.g. injected by RAAT operator, can be easily detected
by test cases run in a web browser. On the other hand simple unit tests do not
kill such mutants, which might be treated as equivalent in their context. These
mutants can be killed by unit tests with the usage of meta-programming tech-
niques, such as reflection, that allow investigating and modifying a program
during its run. An open question remains whether an application has to be run
on a web server or should we accept usage of meta-programming in unit tests.
In the first case, the long execution time might make the entire process impos-
sible to use efficiently with large number of tests or mutants. In the latter case,
interesting consequences of such a decision emerge. The mutant equivalence is
then relative, depending on the testing approach. If we allow the usage of me-
ta-programming techniques, no mutant with changed code can be considered
equivalent, as the modification can always be detected by static analysis and
not program behavior.

Mutation testing of ASP.NET MVC

The VisualMutator tool is currently extended with selected standard and
object-oriented mutation operators for C# language. It is also planned to be
used in evaluation of automatically developed mutation-based test cases.

Bibliography

1. CREAM - Creator of Mutants,
http://galera.ii.pw.edu.pl/~adr/CREAM/ [access: 2013]

2. Derezińska A., Szustek A.: Object-oriented testing capabilities and
performance evaluation of the C# mutation system, Szmuc T., Szpyrka
M., Zendulka J. (eds.), LNCS, vol. 7054, Springer, 2012, pp. 229-242

3. Derezińska A. Kowalski K.: Object-Oriented Mutation applied in
Common Intermediate Language programs originated from C#", Proc.
of IEEE 4th Inter. Conf. Software Testing Verification and Validation
Workshops (ICSTW), IEEE Comp. Soc., 2011, pp. 342 - 350

4. Jia Y., Harman M.: An analysis and survey of the development of mu-
tation testing, IEEE Transactions of Software Engineering, Vol. 37,
No. 5 Sep/Oct 2011, pp. 649-678

5. Madeyski L., Stochmialek M.: Architectural design of modern web
applications, Foundations of Computing and Decision Sciences, Vol.
30, No 1, 2005, pp. 49-60

6. Mansour N., Houri M.: Testing web applications, Information and
Software Technology, vol. 48, issue 1, Jan 2006, pp. 31-42

7. MVC Music Store, http://www.asp.net/mvc/tutorials/mvc-music-store
8. NerdDinner, http://nerddinner.com [access: 2013]
9. Nester, http://nester.sourceforge.net [access: 2013]
10. PexMutator, http://pexase.codeplex.com/wikipage?title=PexMutator

[access: 2013]
11. Sanderson S.: Pro ASP.NET MVC 2, Apress, 2010
12. Smirnow A.: Automated testing of ASP.NET MVC applications, Meth-

ods & Tools, Vol. 20, No 1, 2012, pp. 13-18
13. Trzpil P.: Mutation testing in ASP.NET MVC, Bach. Thesis, Institute

of Computer Science, Warsaw University of Technology, 2012

