dr Anna DereZiska, Piotr Trzpil

Institute of Computer Science

Faculty of Electronics and Information Technology
Warsaw University of Technology

e-mail A.Derezinska@ii.pw.edu.pl

Mutation testing of ASP.NET MVC

Abstract

Mutation testing deals with assessing and improygjuglity of a test suite for a com-
puter program. The range and effectiveness of tethod depends on the types of
modifications injected by mutation operators. Wevehahecked whether mutation
testing technique can be used to evaluate test daséASP. NET MVC-based web
applications. Several new specific mutation opegateere created and discussed. The
operator judgment was experimentally verified witle mutation tool implementing
the operators in the Common Intermediate Langu@ge) ©f .NET. The results show
that mutation testing can be successfully appledrt application running on a web
server, but execution times of functional testsloamong.

Keywords: mutation testing, ASP .NET MVC, C#, Common Interiiagel Language

I ntroduction

Mutation testing is a process that can be useddasore quality of a
test suite for a computer program [4]. It is basadnjecting deliberate mis-
takes into the application code and testing theifieadprogram to gain in-
formation about insufficient and missing tests. <hms used to create mod-
ifications (mutation operators) can be devoted @oegal features of a pro-
gramming language such as logical expressionsyjectoriented characteris-

A . Dereziska, P. Trzpil, Mutation testing of ASP.NET MVCSWacha (Ed.) Advances in Software Devel-
opment, Scientific Papers of the Polish Informafsncessing Society Scientific Council, Warsaw 2@p3
127-136

Mutation testing of ASP.NET MVC

tics. However, specific application technology, Isus web processing also
requires comprehensive testing, which could befiedriwith the mutation
approach. The ASP.NET MVC programming environmeiais vehosen for
evaluation. This framework is a set of libraries @oeation of easily-tested
web applications using the Model-View-Controllesigm pattern [5,11].

We proposed several specialized mutation oper#tatscan be applied
in the ASP.NET MVC applications at the Common Intediate Language
(CIL) code originated from the C# source code. Dperators were imple-
mented in the mutation tool and experimentally eatdd. In experiments two
common methods of application testing were takém account: unit tests and
functional tests run in a web browser.

1. Related wor k

Mutation testing was applied for different gengratpose languages as
well as specific domain languages [4]. Mutation rapars related to .NET
platform were developed at two code levels, witargfes provided into C#
source code or into lower level of the Common Imkediate Language (CIL).

General purpose structural mutation operators mpeimented in the
Nester tool [9]. The simple C# code modificatiohesuare defined in regular
expressions or XML document and can result in idvaiutants. The tool is
not further developed. PexMutator [10] cooperatéh the Pex extension of
the Microsoft Visual Studio. It injects severalusttural changes into Interme-
diate Language. The mutated code is verified vagtst automatically generat-
ed by Pex. CREAM (CREAtor of Mutants) was the firatitation testing tool
dealing with object-oriented mutation operators @ programs [1,2]. Faults
are injected into the C# code in the form of a ayritee which is an output of
the parser analysis. The current - third versigopsus 8 standard and 18 ob-
ject-oriented mutation operators of C#. Mutatiohintermediate Language of
.NET for programs originated from C# are introdubgdhe ILMutator proto-
type [3]. It implements 10 object-oriented and @#dfic mutation operators.

Mutation testing was considered for web applicagidrased on the
ASP.NET Web Forms [6]. Though, applications usimg former library have
less test facilities and do not support the MVQeratthat is fundamental for

Mutation testing of ASP.NET MVC

mutation operators aimed at ASP.NET MVC. Advantagied disadvantages
of integration and unit testing of ASP.NET MVC aliscussed in [12].

2. Mutation operatorsfor ASP.NET MVC framework

The ASP.NET MVC framework is a set of libraries goging building
of highly testable Internet applications based ba MVC (Model-View-
Controller) architectural pattern [5, 11]. It combs programming paradigms
common to Ruby on Rails, such as conventions owefiguration, model
binding and code simplicity, with the ASP.NET welghnology of Microsoft
(running on .NET framework).

The MVC architectural pattern separates an appdicanto three main
components: the model, the view, and the controlfethe framework, URL
requests are mapped to controller classes and rietinods. The controller
handles and responds to user input and interactidms controller performs
operations on the model, and forwards a respogseesiew to the user. Ac-
tion methods (also called ‘actions’) are controlieethods that can handle
HTTP requests. They are recognized by their retypa — deriving fromAc-
tionResult The platform manages and calls specific actionsandle incom-
ing requests.

Views are components providing generic data fosgmeéation of web
pages. In the framework, views are files returngcctntroller actions. The
files consist of HTML code, combined with the saude of an imperative
language of .NET - usually C#.

Model objects implement the logic for the busindata domain. They
often cooperate with the data base that stores\tue| data.

Separation of components and loose coupling ofrothats with the ex-
ecution platform encourage application testabilityunit tests, we can create
controller objects, call their methods and verdgults.

Mutation operators devoted to selected features mbgramming tech-
nology should take into account various criterigrsas:

- a place of a change can be easily identifiethéncode,

- a code modification can be straightforwardly iz,

- a modified code is not detected by all tests,

Mutation testing of ASP.NET MVC

- a mutation mimics a mistake that can be commomdyle by a soft-
ware developer.

We propose six new mutation operators for ASP.NBEMOMthat can be
implemented at the CIL level. Selected mutationrafpes are illustrated by
examples in the C# code corresponding to actualoGtle on which the muta-
tion operators operate. In other cases code exampteomitted due to brevity
reasons. Full examples are available in the tH&8is The following sections
present mutation operators grouped by area of cgijan.

2.1. Modifications of Model Binding

Values of client requests can be automatically stdplito action param-
eters. A request is passed to a method if its nanaentical to the name of the
action parameter.

CAPN - Change Action Parameter Nangea mutation operator that
changes the name of an action parameter. The rasubstituted by a dummy
name such as “mutatedParameterName#”, where #sstandn order number
(Listing 1). In consequence, a request value ferabtion parameter will not
be found during a mutant execution, unless a defallie was defined. The
result of this mutation depends on the parameime.tif the parameter is of
reference type, it will be set taull and will probably cause a fault of the
method. In case of a value parameter, an excepiibhe raised immediately.

This mutation can be easily introduced in the mediate language. It
is more complicated when applied in the C# code tduasage of optional
parameters. In C# the whole project has to be Bedrfor occurrence of the
method calls (expected in unit tests) in ordemsuee a compliable code.

// Before mutation - C# code
public ActionResult Edit(string name) { ...}

// After mutation - C# code
public ActionResult Edit(string mutatedParameterNamel) { ...}

Listing 1. Example of CAPN operator - Change ActiRarameter Name

Mutation testing of ASP.NET MVC

2.2. Modifications of Action Attributes

There are two kinds of C# attributes that are plawefore action meth-
ods: method selectors and filters. A programmer ws attributes delivered
by the platform or create their own attributes.

Method selectors are used for identification ofaation which will be
executed after a request delivery. One of sucibatés isActionNameAttrib-
ute that changes a default action name, which is #menof a method, into a
given name.

Filters make actions to be constrained with add#ioestrictions. Filter
attributes can be placed before a controller clhass, influencing all actions of
the controller. Among other filters of the framewowe can us@uthorizeAt-
tribute for an action that has to be authorizedHandleErrorAttributestating
what should be done when an exception was raised.

Attributes have influence on application executoty if it is executed
on a server. Therefore the most obvious testsviirifly usage of attributes are
functional tests run in a web browser. Using uedt$ a presence and a state of
an attribute can be verified.

SWAN - Swap Action Namesuld be a mutation operator that swaps
names of two actions through interchangé\cofionNameattributes. In result,
in all cases when one action should be executethanaction is raised. In
order to have a consistent code, both actions dhwate the same number of
parameters of the same types. Moreover, action siaae be checked by a
compiler, e.g. while callinfRedirectToActionmethod, and the mistake can be
easily detected.

RAAT - Remove Authorize Attributds a mutation operator that re-
movesAuthorizeattribute placed before an action or a controlldrerefore
the action or all actions of the controller carcbfied by an anonymous client.

This mutation checks an important feature of arliegipon concerning
its security. In many programs, it is easy to bpliad both in C# and CIL
code. HoweverAuthorizeattribute can be extended by inheritance with addi-
tional functionality or other authorization policy such cases the removal of
the attribute should be waived.

Mutation testing of ASP.NET MVC

2.3. Maodifications of Action Results

An action of a controller returns a value descgbénserver answer to a
client request. There are different types of sucbwers inherited from the
ActionResultclass, for exampleViewResult- a view is generatedRedirec-
tResult -redirection of a client to another addre¥sonResult a return value
is in JavaScript Object NotatiofrileResult -a file is returned. Methods of
controller support creating of these answers.

An application changes its behavior if a value med by an action is
modified. The mutation is limited for the cases witlee return value inherits
from theActionResultlass, which is a typical solution.

RVRA - Replace View with RedirectToActiois a mutation operator
that changes an object returned by a controlleomdRedirectToActionResult
is returned instead &fiewResul{(Listing 2). The mutation can be detected by
tests that check a type of an object returned bgcéon.

// Before mutation - C# code

public ActionResult ViewOrRedirect(object obj)
{ return base.View(obj); }

// After mutation - C# code
public ActionResult ViewOrRedirect(object obj)
{ return base.RedirectToAction("Index"); }

Listing 2. Example of RVRA operatoiReplace View with RedirectToAction

CRAT - Change RedirectToAction Targas a mutation operator that
changes a target action being a redirection metlatidoarameter. The muta-
tion can be implemented by substitution of a stidemtifying a target action.

In the selected solution the name is substituted dymmy actiofiMu-
tatedlrrelevantActionNamie Usage of a dummy action is easy to be imple-
mented and it is irrelevant whether the actionresded to exists or not. The
action will not be found and will cause an erroremtrun on a web server.
However in unit tests this will not be the case anaser must check thc-
tionResulobject for valid action name.

Mutation testing of ASP.NET MVC

2.4. M odifications of Route Mapping

URL routing is used for mapping incoming URL reqgse® the appro-
priate controllers and their actions. The routingiee parses variables defined
in the URL and the framework passes the paramataes to the controllers.

CMRA - Change MapRoute Address Patteris a mutation operator
that changes an URL address. The string definiadRL pattern is substitut-
ed by a dummy one, e.gMutatedString. Therefore the route will be not cor-
responding to any incoming request. One of othestieg routes will be used
and as a result the appropriate controller mightiedound.

The basic rule of the mutation is easily implemdntdowever, there
are many overloaded forms of tMapRoutemethod. Extension of the muta-
tion operator to all of them requires investigatamany possible parameter
combinations. The CMRA operator is reasonable figgdr projects with
many routes applied. In a small project a routingtake can be easily detect-
ed by a developer.

3. Experimental evaluation of ASP.NET MVC mutation operators

Mutation experiments on the above discussed mutatjerators were
performed with the VisualMutator tool [13]. Thisolovas developed as a Vis-
ual Studio extension and provides an expansibladweork for mutation test-
ing at the CIL level. Tight coupling with the Vidu&tudio development
framework makes the mutation testing process efiigcias the program under
test is compiled only once and mutants can be géseefast.

Two subjects based on the ASP.NET MVC platform waraluated in
experiments (Tab. 1). Their open source code idadla on the codeplex.com
service. The first subject is NerdDinner [8] - gren source project that helps
Internet people plan get-togethers. It utilizesdb#horization system based on
the Open ID standard and local accounts. The aifgit also uses Bing
search engine, geolocation and RSS feeds. NerDisrtistributed with a set
of unit tests. The second subject of experimentd\WC Music Store [7] - a
store which sells music albums online. This apgilbcawas tested with func-
tional test cases that run in a web browser impidetkas control instructions
of the WebDriver library.

Mutation testing of ASP.NET MVC

The basic metrics of the applications and theirdases are summarized
in Tab. 1. The metrics were measured with the NDdgeol. In Music Store,
big samples of exemplary data included in the @ogwere omitted.

Table 1. Subjects of experiments

NerdDinner Music Store
Applic. Testcases Applic] Testcases
LOC without comments 730 461 195 61
Type number 71 20 27 2
Method number 399 156 172 17

Results of the test ability to detect faults ingetby the mutation opera-
tors are shown in Tab. 2. In case of NerdDinneramigt of only two operators
were killed by unit tests. Operators RVRA and CRA®dify results returned
by actions, which is usually covered by unit teBtgually important is verifi-
cation of route mapping (CMRA) that is not covelsdthe tests designed for
the application. Other mutants are not easily #illyy unit tests unless the
reflection mechanism was applied.

Tests of Music Store run were more effective ilingl mutants. They
required less code (Tab.1l) but were run in the imedwser and took more
time. An average test time of a mutant was equalslfor NerdDinner with
unit tests run with NUnit, whereas 26.2 s for MuStore mutants run in the
ASP.NET Development Server and functional testcatesl with the assis-
tance of VS MsTest.

Table 2. Mutation testing results

Mutation NerdDinner Music Store

operators mutant number killed mutant number killed
CAPN 25 0 14 7
RVRA 37 22 18 6
CRAT 11 5 10 3
SWAN 15 0 8 6
RAAT 13 0 4 1
CMRA 3 0 1 1
Sum 104 27 55 24

Mutation testing of ASP.NET MVC

Conclusions

We have shown how the mutation testing approachbeaapplied for
the ASP.NET MVC-based web services.

Efficiency of a unit test suite in the respectld tonsidered mechanism
verification was not very high (mutation score ab@6%). However, it is
difficult to cover by unit tests all mechanismdiaéd by an application run on
a server. Better mutation results (44%) with mugadilied of all fault types
gave test cases run in a web browser but theirutectimes were signifi-
cantly longer.

In many cases, the functionality of presented dpesacan be approxi-
mated by standard and object mutation operator€folanguage. However it
can be assumed that part of possible programmer gpace will not be cov-
ered in that case, due to differences of ASP.NETOWaAsed application and
standard desktop application. The specific opesator the platform should
operate on higher level of abstraction, making afseoncepts of the platform
and the language. This puts them to good use at@mglard and object opera-
tors. Nevertheless, usability of each operator khba analyzed to avoid du-
plicating functionality of classic operators.

Some faults, as e.g. injected by RAAT operator, lsareasily detected
by test cases run in a web browser. On the othed Benple unit tests do not
kill such mutants, which might be treated as edaiviain their context. These
mutants can be killed by unit tests with the usaigeeta-programming tech-
niques, such as reflection, that allow investigat@md modifying a program
during its run. An open question remains whetheagplication has to be run
on a web server or should we accept usage of nmetggmming in unit tests.
In the first case, the long execution time mighkenthe entire process impos-
sible to use efficiently with large number of testanutants. In the latter case,
interesting consequences of such a decision enméhgemutant equivalence is
then relative, depending on the testing approdole lallow the usage of me-
ta-programming techniques, no mutant with changetke ccan be considered
equivalent, as the modification can always be deteby static analysis and
not program behavior.

Mutation testing of ASP.NET MVC

The VisualMutator tool is currently extended witexted standard and

object-oriented mutation operators for C# langudgés also planned to be
used in evaluation of automatically developed nioitabased test cases.

Bibliography

1. CREAM - Creator of Mutants,
http://galera.ii.pw.edu.pl/~adr/CREAM/ [access: 3D1

2. Derezihska A., Szustek AObject-oriented testing capabilities and
performance evaluation of the C# mutation sys@mmuc T., Szpyrka
M., Zendulka J. (eds.), LNCS, vol. 7054, Sprin@&12, pp. 229-242

3. Dereziiska A. Kowalski K.:Object-Oriented Mutation applied in
Common Intermediate Language programs originatethfC#, Proc.
of IEEE 4th Inter. Conf. Software Testing Verifiat and Validation
Workshops (ICSTW), IEEE Comp. Soc., 2011, pp. 3330

4. Jia Y., Harman M.An analysis and survey of the development of mu-
tation testing [IEEE Transactions of Software Engineering, Val. 3
No. 5 Sep/Oct 2011, pp. 649-678

5. Madeyski L., Stochmialek MArchitectural design of modern web
applications,Foundations of Computing and Decision Sciences, Vo
30, No 1, 2005, pp. 49-60

6. Mansour N., Houri M.Testing web applicationtnformation and
Software Technology, vol. 48, issue 1, Jan 20063fhpt2

7. MVC Music Store, http://www.asp.net/mvc/tutorialsieamusic-store

8. NerdDinner, http://nerddinner.com [access: 2013]

9. Nester, http://nester.sourceforge.net [access:]2013

10. PexMutator, http://pexase.codeplex.com/wikipage2tiexMutator

[access: 2013]

11. Sanderson SPro ASP.NET MVC,2Apress, 2010
12. Smirnow A.:Automated testing of ASP.NET MVC applicatjavieth-

ods & Tools, Vol. 20, No 1, 2012, pp. 13-18

13. Trzpil P.:Mutation testing in ASP.NET MVY®ach. Thesis, Institute

of Computer Science, Warsaw University of Techng|@p12

